React-pdf

v3
v1
v2
v3

	Quick start guide
	Compatibility
	Rendering process
	Components	Document
	Page
	View
	Image
	Text
	Link
	Note
	Canvas
	PDFViewer
	PDFDownloadLink
	BlobProvider

	SVG Images	Svg
	Line
	Polyline
	Polygon
	Path
	Rect
	Circle
	Ellipse
	Text
	Tspan
	G
	Stop
	Defs
	ClipPath
	LinearGradient
	RadialGradient

	Hooks
	Styling	StyleSheet API
	Media queries
	Valid units
	Valid CSS properties

	Fonts	register
	registerHyphenationCallback
	registerEmojiSource

	Node API	renderToFile
	renderToString
	renderToStream

	Advanced	Page wrapping
	Document Navigation
	On the fly rendering
	Orphan and widow protection
	Dynamic content
	Debugging
	Hyphenation
	Usage with Express.js
	Rendering large documents

	Playground / REPL
	Donate

Edit
Fonts
React-pdf is shipped with a Font module that enables to load fonts from different sources, handle how words are wrapped and defined an emoji source to embed these glyphs on your document.
You can define multiple sources for the same font family, each with a different fontStyle or fontWeight. React-pdf will pick the appropriate font for each <Text /> based on its style and the registered fonts.
Currently, only TTF fonts files are supported. A list of available TTF fonts from Google can be found here.
import { StyleSheet, Font } from '@react-pdf/renderer'

// Register font
Font.register({ family: 'Roboto', src: source });

// Reference font
const styles = StyleSheet.create({
 title: {
 fontFamily: 'Roboto'
 }
})

register
Fonts really make the difference when it comes on styling a document. For obvious reasons, react-pdf cannot ship a wide amount of them. Here's a list of available font families that are supported out of the box:

	Courier
	Courier-Bold
	Courier-Oblique
	Courier-BoldOblique
	Helvetica
	Helvetica-Bold
	Helvetica-Oblique
	Helvetica-BoldOblique
	Times-Roman
	Times-Bold
	Times-Italic
	Times-BoldItalic

In case you want to use a different font, you may load additional font files from many different sources via the register method very easily.
import { Font } from '@react-pdf/renderer'

Font.register({ family: 'FamilyName', src: source, fontStyle: 'normal', fontWeight: 'normal', fonts?: [] });

source
Specifies the source of the font. This can either be a valid URL, or an absolute path if you're using react-pdf on Node.
family
Name to which the font will be referenced on styles definition. Can be any unique valid string
fontStyle
Specifies to which font style the registered font refers to.

	Value	Description

	normal	Selects a font that is classified as normal Default
	italic	Selects a font that is classified as italic. If no italic version of the font is registered, react-pdf will fail when a style of this type is present
	oblique	Selects a font that is classified as oblique. If no oblique version of the font is registered, react-pdf will fail when a style of this type is present

fontWeight
Specifies the registered font weight.
	Value	Description
	thin	Equals to value 100
	ultralight	Equals to value 200
	light	Equals to value 300
	normal	Equals to value 400 Default
	medium	Equals to value 500
	semibold	Equals to value 600
	bold	Equals to value 700
	ultrabold	Equals to value 800
	heavy	Equals to value 900
	number	Any integer value between 0 and 1000

When the exact font weight is not registered for a given text, react-pdf will fallback to the nearest registered weight in the same way browsers do. More information here
See it in action →
fonts
In many cases you will end up registering multiple sources for the same font family (each with different font-style and font-weight for instance). As an alternative of calling Font.register for each of this, you can use the fonts attribute to register them all at once:
Font.register({ family: 'Roboto', fonts: [
 { src: source1 }, // font-style: normal, font-weight: normal
 { src: source2, fontStyle: 'italic' },
 { src: source3, fontStyle: 'italic', fontWeight: 700 },
]});

registerHyphenationCallback
Enables you to have fine-grained control over how words break, passing your own callback and handle all that logic for yourself:
import { Font } from '@react-pdf/renderer'

const hyphenationCallback = (word) => {
 // Return word parts in an array
}

Font.registerHyphenationCallback(hyphenationCallback);

See it in action →
Disabling hyphenation
You can easily disable word hyphenation by just returning the same word as it is passed to the hyphenation callback
Font.registerHyphenationCallback(word => [word]);

See it in action →

registerEmojiSource
PDF documents do not support color emoji fonts. This is a bummer for the ones out there who love their expressiveness and simplicity. The only way of rendering this glyphs on a PDF document, is by embedding them as images.
React-pdf makes this task simple by enabling you to use a CDN from where to download emoji images. All you have to do is setup a valid URL (we recommend using Twemoji for this task), and react-pdf will take care of the rest:
import { Font } from '@react-pdf/renderer'

Font.registerEmojiSource({
 format: 'png',
 url: 'https://cdnjs.cloudflare.com/ajax/libs/twemoji/14.0.2/72x72/',
});

Protip: react-pdf will need a internet connection to download emoji's images at render time, so bare that in mind when choosing to use this API

See it in action →
← Styling
Node API →

